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Note on the interpretation of two-dimensional theories 
of growing cavities 
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It is shown in general how a two-dimensional flow can be justified as a physical 
approximation, notwithstanding the logarithmic singularity in pressure that 
occurs at  infinity when the cavity expands or contracts at a varying rate. The 
argument presented, which affords a more natural interpretation than alterna- 
tives previously suggested, refers to the approximate equivalence-to a deter- 
minable degree of accuracy-between the hypothetical plane flow and the inner 
region of some real three-dimensional flow with small spanwise variations. The 
main ideas are illustrated by the example of a long ellipsoidal body which changes 
in volume while also undergoing shape perturbations. 

1. Introduction 
In  the paper by Woods (1964) that precedes this note, a two-dimensional 

theoretical model is used to investigate the flow around a growing vapour- or 
air-filled cavity of finite section formed behind a hydrofoil in a stream of water. 
A similar model was also applied recently by Wang & Wu (1963) to the same 
problem, and its physical implications had previously been noted by Wu (1958). 
These authors have recognized that the infinite plane flows considered by them 
are basically unreal in that the pressure is unbounded at  large distances from the 
cavity, and though reasonably convincing intuitive arguments have been put 
forward, the admissibility of this feature in a physical approximation does not 
appear to have been demonstrated definitely so far. The matter is taken up in this 
note. 

The essential difficulty is easily explained as follows. If the rate of increase in 
the cavity volume (per unit span) is Q(t) and the fluid is incompressible, then by 
continuity the mean velocity potential at  a radius m extending beyond the cavity 
is Q, = (Qf2n)logw. (The possible presence of circulation is ignored here, but 
otherwise the argument would need only trivial modification and the conclusion 
would be unaffected.) Hence, in consequence of its dependence on -aQ,/at, 
the pressure is unbounded for a -+ co if Q varies and the cavity pressure is finite. 
More meaningfully, one may say that indefinitely large pressures are necessary 
at great distances in order to generate a volume change in the cavity. As was 
pointed out by Wang & Wu (1963), however, the extrapolation of the plane flow 
to infinite distances is merely a simplifying idealization, and any real flow is 
necessarily three-dimensional ‘in the large ’; thus the pressure singularity is 
avoided by the flow becoming three-dimensional at  finite distances. 
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This peculiarity of plane flows was illustrated by Birkhoff (1950, p. 34) with 
reference to the cavity produced by a ‘two-dimensional underwater explosion ’. 
If the water is supposed incompressible and the pressures finite, no expansion 
of the cavity appears to be possible. As a resolution of the paradox Birkhoff 
suggested that ‘at very large distances the effect of compressibility in absorbing 
the expansion is dominant ’; but the present view of the matter radically contra- 
dicts this interpretation, which may be criticized for appealing to an extraneous 
physical property as a way out of a purely theoretical difficulty. No practical 
situation seems conceivable in which, at  large distances from an approximately 
two-dimensional cavity, the impediment to expansion is relieved by compression 
of the water rather than by the more obviously providential means of a three- 
dimensional flow. [Note that the relative importance of these alternative mechan- 
isms in a practical example would be indicated by a comparison between the 
length scale L of spanwise variations (vide infra) and the wavelength of sound 
waves in water; only if the former exceeded the latter could one presume com- 
pressibility to be the predominant factor. But even for vibrations at  a frequency 
of 100 cis, say, which is a rather high value for experimental cavities, the wave- 
length is more than 48 ft and so it seems extremely unlikely that L could be other 
than a great deal shorter!] Several other theoretical devices, more or less 
artificial, have also been proposed for overcoming the difficulty in question; 
for example, Geurst (1961) listed four possible ways in all, although unfortunately 
he missed the interpretation that now appears to be the only really meaningful 
one. 

According to the view to be developed here, which consolidates the ideas 
proposed by Wang & Wu (1963) in particular, the proper rationale for an infinite 
two-dimensional model is to recognize as an essential feature that the cavity 
volume changes are ‘driven’ by infinite pressures or suctions at a = 00, and to  
regard Q(t)  as an arbitrary property of the hypothetical system. Thus the system 
is obviously unrealistic taken in toto, but still it  provides a self-consistent model 
within whose framework the dependence on Q(t)  of properties such as cavity 
length may be calculated. To justify the theory as a physical approximation, 
one has then to prove that such a dependence on Q(t) is nearly the same as in a real 
system where, at large a, the outflow accompanying cavity expansion is accom- 
modated by an essentially three-dimensional displacement of fluid. This is 
the main object of this note, namely to substantiate analytically the intuitive 
arguments given by Wang & Wu. 

The point of interpretation made outstanding by the present considerations is 
that in practice Q will necessarily depend on factors outside the scope of any two- 
dimensional theory, so that in developing such a theory it is pointless to regard 
Q other than as an independent property or to attempt to allow empirically for 
effects such as evaporation and entrainment on which Q ultimately depends. 
To deduce Q a priori for any real system a three-dimensional theory is essential, 
in which of course Q would have to be represented as a function of spanwise 
position. 

It may be remarked, incidentally, that a rather similar difficulty is presented 
by the need to represent changes in the circulation about the hydrofoil-cavity 
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combination. But the device of a trailing vortex sheet used by Woods (1964) 
allows for this factor satisfactorily within the framework of the two-dimensional 
model, and so there is no necessity to refer to the spanwise stretching of ‘bound ’ 
vortex lines, which could provide an alternative rationale analogous to that 
for the variations in cavity volume. For simplicity, therefore, circulation will be 
ignored in the following discussion; that is, the two-dimensional velocity poten- 
tial is assumed to be single-valued. 

2. Analytical discussion 
The crux of the matter is to match two-dimensional potentials to three- 

dimensional ones. More precisely, we need to show how, in an approximately 
two-dimensional situation (i.e. with small spanwise variations), the solution to 
the strictly two-dimensional problem posed in respect of a typical cross-section 
may approximate closely to a certain ‘infield’ yet may be linked smoothly to a 
three-dimensional solution for the ‘outfield’, where the radial distance from the 
cavity is comparable with the length scale of the spanwise variations. The 
analytical means for thus matching a two-dimensional source flow is recognizable 
at once in the fact that the velocity potentialt in the outfield may be synthesized 
from terms like 

where z is the spanwise co-ordinate. Here a-l is large in comparison with the 
dimensions of the hydrofoil-cavity section, but am is O(1) or greater. This 
potential has the property $h -+ 0 for a + 00 and so meets the physical require- 
ment that the pressure is bounded at infinity; but since the Bessel function has 
logarithmic behaviour near the origin, it  can be identified for LXW small with the 
two-dimensional source potential @ = log a applicable within the infield. 

The point may be argued more formally as follows. Consider a three-dimen- 
sional situation where the representative length scale of the hydrofoil-cavity 
cross-section is 1 and that of the spanwise variations, over a certain central region 
excluding the lateral extremities, is L (9  I ) .  Let x and y be the (dimensional) 
co-ordinates in cross-sectional planes and again z the spanwise co-ordinate. 

Then, in terms of the dimensionless co-ordinates X = x/l, Y = y/l and 
2 = z/L, Laplace’s equation for the velocity potential takes the form 

$h = cosazK,(am), 

in which e2 = (l/L)2 is a very small number by hypothesis; and clearly each of the 
three second derivatives in (1)  is at  most O(1) in the central region. The infield 
may be defined as that part of this region over which R = (Xz+ Y2)t  is small in 
comparison with e-l. But since the system is unbounded in R it must also include 
an outfield where ER 2 O( l), however small E may be, and here all three terms in 
(1) become of comparable magnitude. Consequently there can be no approximate 
solution developed in powers of E that is uniformly valid for all R. 

t To save unnecessary writing, only that part of the velocity potential due to the 
presence of the hydrofoil and cavity will be considered explicitly ; that is, the component 
representing the undisturbed stream, Ux say, will be left implicit everywhere. 
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principle, an arbitrary degree of accuracy according to the scheme 
For the infield, however, one can derive an approximate solution to, in 

# = $h0+"$h1+E2$h2+ ..., ( 2 )  

provided that at the outskirts of this region it can be matched to an admissible 
solution for the outfield. 

In  the first approximation, ( 1 )  gives 

where CD(X, Y )  is a conjugate function. The interior boundary condition will 
be independent of 2-derivatives in this approximation, and thus a two-dimen- 
sional problem such as considered by Woods is posed, the only specification still 
lacking being the behaviour of CD for large R. [The exact forms of the boundary 
conditions will contain terms which are O(E) ,  but (1) shows that $ho + qb1 is also 
expressible in the form (3). Hence the second approximation can be derived again 
using this form of velocity potential. This would be a 'slender-body approxima- 
tion' in the general sense of the term.] 

At this point it becomes necessary to specify the overall physical problem 
rather more precisely. We must in fact recognize that the rate of expansion of 
the cavity cross-section, Q ( 2 ,  t ) ,  is dependent on the complete three-dimensional 
flow, but that this together with the cavity pressure are the only variable 
characteristics of the approximately two-dimensional flow in a plane z = const. 
that are not determined to the first approximation by the local behaviour of 
the cavity. In  other words, there is no incidental factor affecting the outfield 
in the 'central region', such as the presence of additional boundaries at  distances 
0(c1). This means that the flow perturbation in the outfield will be very nearly 
axially symmetric, being primarily due to the cavity expansion, although of course 
some residual effect of the asymmetric flow in the vicinity of the cavity will 
inevitably extend to the outfield. The important point is that the asymmetric 
part of the flow must diminish with radial distance even within the infield, since 
it is determined by the local state of the cavity and not driven from outside the 
infield. 

Hence, since @ is assumed to be single-valued, it may be expressed in terms of 
R and w = tan-l( Y j X )  in the general form 

CD = A+a,logR+ 2 Lcos (nw+&,) ,  (4) Rn 

which is complete outside a circle R = const. enclosing the hydrofoil-cavity cross- 
section. Here A,  the a's and the 6's are functions of Z alone, and potentials of the 
type REl" cos (nw + 6,) have been excluded for the reason explained in the preceding 
paragraph. If E is sufficiently small so that the infield extends to fairly large R, 
then the terms involving R-" become very small in the 'overlapping region' 
where the infield merges into the outfield and matching is to be accomplished; 
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hence there is little significance in identifying the corresponding components of 
the outfield, but since this can be done very simply we shall briefly point out 
the procedure below. The moreimportant task, of course, is tomatch the twolead- 
ing terms in (4), identifying them with the solution of the implicit three-dimen- 
sional problem. 

For the outfield the general solution of (1)  having the property Q + 0 for R + co 
may be expressed in the following form, where the 2-variation is represented 
by Fourier integrals: 

m 
qi = 5 1 eickZ cos [nw + q,(k)l K,(~I%R) g,(k) dk.  ( 5 )  

n=0 --m 

Alternatively the solution might be expressed in terms of Fourier series over a 
finite range of 2 (e.g. the breadth of the ‘central region’), but the essential argu- 
ment given as follows would be unaffected. From the definition of 2 it is clear that 
g, (k) ,  or the coefficients of the Fourier series, will become negligibly small for 
k > O(1). 

The symmetric component of ( 5 )  is, with T~ = 0 taken for simplicity, 

and we need to match this to the source potential for the infield. In  the ‘over- 
lapping region ’ we have sR 4 1,  and since only k = O( 1) is relevant we have 

Ki,(sLR) = - (log (&lcR) + r} + O(e2R2).  

Putting log (&ER) = log R + log ( i s k ) ,  we see that the coefficient of log R and 
the remainder in the first approximation to (6) are both functions of 2 alone. 
Thus the required matching with &, = A(2)  + ao(2) log R is precisely achieved. 

Since if n 1 we have, for sLR small, 

K,(ekR) N +(n - I ) !  (+d&-”, 

the remaining terms in (4) may similarly be matched to ( 5 ) .  But we observe that 
g, = O(en) in this case, which confirms our previous remarks as to the smallness 
of the asymmetric part of the outfield in the present approximation. 

3. Example 
To illustrate the foregoing ideas the flow caused by the uniform expansion or 

contraction of a long ellipsoidal body will be examined. This example is the 
simplest available whereby the general interpretation of the ‘infield’ can be 
demonstrated explicitly. 

Consider the ellipsoid of revolution 

5 2  + y2 + €222 = a2, ( 7 )  

with equatorial diameter 3a and polar diameter 3a/e, = 3b say. If Q varies with 
time yet s is constant, the surface remains similar to itself while the volume 
changes at a rate d V / d t  = 47rs-la2a. It is supposed that the body expands or 
contracts in this basic form but also suffers perturbations from it which leave 
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the volume unaffected. The body is surrounded by fluid which is motionless at  
infinity and whose flow a t  finite distances is irrotational, having been started 
from rest. 

The first aim is to show that, if 8 < 1, there exists an infield throughout which 
the primary flow approximates to a two-dimensional source flow in each cross- 
sectional plane. The second is to show that the set of three-dimensional har- 
monics which describes the perturbed motion is equivalent to a set of two- 
dimensional ones within the infield. 

We take prolate spheroidal co-ordinates (p, 8, w )  such that 

x = pcos8, w = (x2+y2)* = (p2--c2)*sin07 
x = wcosw, y = asinw. ( 8 )  } 

The surfaces p = const. and 8 = const. are confocal ellipsoids and hyperboloids 
of two sheets, respectively, with their common foci at  (0, 0, & c). In  particular, 
the boundary ( 7 )  is given by p = b, (p2 - c2)* = a. 

The velocity potential for the primary fluid motion is 

(cf. Lamb 1932, p. 150). That (9) satisfies the kinematical boundary conditions at  
the surface of the ellipsoid may be readily verified, and we observe that at great 
distances from the origin, such that p 9 c and so p -+ r = ( x 2  + y2 +z2)*, (9) gives 

Hence the total flow outwards is given correctly as 477e-la2LE, equalling d Vldt as 
previously expressed. 

Now, the infield around the ellipsoid may be specified by 

w/csin8 = O(h) ,  (11)  

where h is a small fraction such that h2 is negligible in the over-all approxima- 
tion to be accepted. More simply, if the vicinity of the poles is excluded according 
to the criterion that sin 8 is not small, the definition may be taken as just 

a / c  5 O(h) ,  (12) 

which is equivalent to a / a  = O(h/e) ,  since c f a le ;  thus the lateral extent of the 
infield is large compared with the cross-section of the ellipsoid when A/E 9 1,  
which is the general case in view. 

BY (8) we have 

and 8 = cos-1 - ( l+O(h2))  . K 1 
Substituting (13) in (9), we obtain after reduction 



Two-dimensional theories of growing cavities 143 

But (14) shows 8 to be a function of z alone if O(h2) is negligible. Hence, over the 
infield, the primary radial velocity in any plane z = const. is approximately 

where w,, is the radius of the section of the ellipsoid at the given z. Thus, as was 
to be shown, the flow approximates to the flow in two dimensbns due to the 
expansion of a circular boundary of radius wo. 

It remains to demonstrate a similar property for perturbations from this basic 
flow. There is no need to consider any particular boundary-value problem for the 
deformed ellipsoid, however, since the present object will be met merely by 
showing that the general solid-harmonic component of an arbitrary perturbation 
has a quasi two-dimensional representation within the infield. But it is implied, 
of course, that the deformation of the ellipsoid has significant z-variations only 
on a scale comparable with the length of the infield, or at least considerably 
larger than the equatorial diameter. 

We first consider the symmetric part of the perturbed flow, for which the 
velocity potential may be expressed in the form 

But we have in general, for 5 > 1, 

(cf. Jeffreys & Jeffreys 1946, 3 24.17). Hence, when the approximations (13) 
and (14) are substituted, it appears directly that over the infield the expression 
(17) is equivalent to + = fo(z) 1% w + 9,(4 (18) 

if O(h2) is neglected. Hence the effect in each cross-sectional plane is simply an 
augmentation or diminution of the two-dimensional source flow represented by 
(16), and clearly fo(z) will be determined by the condition that the net flow out 
of a circle w = const. equals the expansion rate of the deformed cross-section 
of the ellipsoid. 

The part of the disturbance dependent on w can be represented by 

m m  

m=O n = l  
+ = x x &;(pic) P;(cos 0 )  [A,, cos nu + B,, sin no]. (19) 

But we have that, near < = 1,  

&;(<) N const. x (<2- I)+, 

the fractional error in the expression being O(5- 1) for n > 1 but 

O(((5- 1)log ((5- I)} for n = 1 
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(cf. Jeffreys & Jeffreys 1946). Hence, when the approximations (13) and (14) 
are used, and both O(h2) and O(h210gA) are neglected, an equivalent form of 
(19) for the infield is seen to be 

Thus, as we needed to show, in each cross-sectional plane the asymmetric part 
of the velocity potential is composed from the set of two-dimensional harmonics 
GJ-~(COS nw, sin nu). 

4. Conclusion 
It has been shown how, in the study of cavity growth behind hydrofoils, a 

two-dimensional theory such as Woods (1964) has used can be justified as a 
physical approximation when spanwise variations are small on the scale of the 
cavity cross-section. Whereas an unbounded pressure at infinity can be allowed 
as an essential feature of the hypothetical plane flow that is considered, and indeed 
it must be allowed in order to rationalize the theory in the simplest way, the 
unreality of the model in this regard is immaterial to its applicability over a 
limited region (the ‘infield’) of an actual flow. But the practical usefulness of 
this type of theory is necessarily restricted by the fact that Q(t ) ,  the rate of expan- 
sion of the cavity section, must be taken as an independent property since in 
reality it is inevitably dependent on three-dimensional effects. 

I am grateful to Dr L. C. Woods for productive discussions of this topic. 
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